
Nikolay Sakharnykh, 8/1/2016

GPU ARCHITECTURES AND NEW
PROGRAMMING MODEL FEATURES

2

HOW GPU ACCELERATION WORKS
Application Code

+

GPU CPU

Compute-Intensive Functions

Rest of Sequential
CPU Code

3

HETEROGENEOUS ARCHITECTURES
Memory hierarchy

CPU 1

System
Memory

GPU
Memory

GPU 0 GPU 1 GPU N

CPU 0

4

GPU ARCHITECTURE

GPU L2

GPU DRAM

SM-0 SM-1 SM-N

PCI-E or NVLINK

5

GPU SM ARCHITECTURE

Kepler SM

SM
SM

SM
SM

Register

File

L1 Cache

Constant

Cache

Functional

Units

(CUDA cores)

Shared

Memory

GK110

CUDA Cores 192

Register File 256 KB

Shared

Memory
16-48 KB

Texture

Cache

15 SMs on Tesla K40

6

GPU SM ARCHITECTURE

Maxwell SM

SM
SM

SM
SM

Register

File

Unified

Cache

Functional

Units

(CUDA cores)

Shared

Memory

GM200

CUDA Cores 128

Register File 256 KB

Shared

Memory
96 KB

Constant

Cache

24 SMs on Tesla M40

7

GPU SM ARCHITECTURE

Pascal SM

SM
SM

SM
SM

Register

File

Unified

Cache

Functional

Units

(CUDA cores)

Shared

Memory

GP100

CUDA Cores 64

Register File 256 KB

Shared

Memory
64 KB

Constant

Cache

56 SMs on Tesla P100

8

LOW LATENCY OF HIGH THROUGHPUT?

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation from other threads (warps)

GPU Stream Multiprocessor – High Throughput Processor

CPU core – Low Latency Processor Computation Thread/Warp

Tn

Processing

Waiting for data

Ready to be processed

Context switch W1

W2

W3

W4

T1

T2

T3

T4

9

ACCELERATOR FUNDAMENTALS

Must expose enough parallelism to saturate the GPU

Accelerator threads are slower than CPU threads

Accelerators have orders of magnitude more threads

 t0 t1 t2 t3

t4 t5 t6 t7

t8 t9 t10 t11

t12 t13 t14 t15

t0 t0 t0 t0

t1 t1 t1 t1

t2 t2 t2 t2

t3 t3 t3 t3

Fine-grained parallelism is good Coarse-grained parallelism is bad

10

BEST PRACTICES

Minimize data transfers between CPU and GPU, and between peer GPUs

Optimize data locality for CPU and GPU

HBM DDR HBM

CPU GPU 0 GPU 1

11

BEST PRACTICES

Minimize redundant accesses to L2 and DRAM

 Store intermediate results in registers instead of DRAM

 Use shared memory for data frequently used within SM

 Use constant and read-only caches on SM

Optimize data locality for SM

L2 cache

GPU SM

GPU DRAM

12

BEST PRACTICES

If addresses from a warp lie within the same cache line, that line is fetched once

Best case: addresses lie in a single cache line (128B), 4x32B transactions

Worst case: fully scattered access, 32 allocated cache lines, 32x32B transactions

Coalesce memory requests

128 256

128 512 2048

13

BEST PRACTICES
Avoid warp divergence

if(threadIdx.x < 12) {

}
else {

}

Instructions are issued per warp

Different execution paths within a warp
are serialized

Different warps can execute different
code with no impact on performance

Avoid branching on thread index

14

BEST PRACTICES

Minimize thread block synchronization

Expose instruction-level parallelism

Use 64-bit and 128-bit vector loads

Control occupancy with compiler hints

Tile computation for better cache reuse

Use mixed or reduced precision

Other common optimizations

15

PROGRAMMING GPUS

16

3 WAYS TO PROGRAM GPUS

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages

Maximum Performance

and Flexibility

Easy to use

Portable code

Compiler

Directives

OpenACC hands-on session today 7:30pm - 9:30pm

17

NVIDIA DEVELOPER LIBRARIES

cuBLAS

cuBLAS-XT

NVBLAS
cuFFT

cuFFT-XT

cuSPARSE

cuSOLVER

AMGX

https://developer.nvidia.com/gpu-accelerated-libraries

cuDNN

cuRAND NPP THRUST NVENC NVBIO

https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries

18

NVGRAPH
Accelerated Graph Analytics

Process graphs with up to 2.5 Billion edges on a
single GPU (24GB M40)

Accelerate a wide range of applications:

0

5

10

15

20

25

It
e
ra

ti
o
n
s/

s

nvGRAPH: 4x Speedup

48 Core Xeon E5

nvGRAPH on K40

PageRank on Wikipedia 84 M link dataset

PageRank
Single Source

Shortest Path

Single Source

Widest Path

Search Robotic Path Planning IP Routing

Recommendation

Engines

Power Network

Planning
Chip Design / EDA

Social Ad Placement
Logistics & Supply

Chain Planning

Traffic sensitive

routing

https://developer.nvidia.com/nvgraph

https://developer.nvidia.com/nvgraph
https://developer.nvidia.com/nvgraph

19

UNIFIED MEMORY

20

UNIFIED MEMORY
Dramatically Lower Developer Effort

Performance

Through

Data Locality

Migrate data to accessing processor

Guarantee global coherence

Still allows explicit hand tuning

Simpler

Programming &

Memory Model

Single allocation, single pointer,

 accessible anywhere

Eliminate need for explicit copy

Greatly simplifies code porting

Allocate Up To
GPU Memory Size

Kepler

GPU
CPU

Unified Memory

CUDA 6+

21

SIMPLIFIED MEMORY MANAGEMENT CODE

void sortfile(FILE *fp, int N) {
 char *data;
 data = (char *)malloc(N);

 fread(data, 1, N, fp);

 qsort(data, N, 1, compare);

 use_data(data);

 free(data);
}

void sortfile(FILE *fp, int N) {
 char *data;
 cudaMallocManaged(&data, N);

 fread(data, 1, N, fp);

 qsort<<<...>>>(data,N,1,compare);
 cudaDeviceSynchronize();

 use_data(data);

 cudaFree(data);
}

CPU code GPU code with Unified Memory

Single pointer for CPU and GPU

22

UNIFIED MEMORY ON PRE-PASCAL

GPU always has address translation during the kernel execution

Pages allocated before they are used – cannot oversubscribe GPU

Pages migrate to GPU only on kernel launch – cannot migrate on-demand

Code example explained

cudaMallocManaged(&ptr, ...);

*ptr = 1;

qsort<<<...>>>(ptr);

CPU page fault: data migrates to CPU

Pages are populated in GPU memory

Kernel launch: data migrates to GPU

23

UNIFIED MEMORY ON PRE-PASCAL
Kernel launch triggers bulk page migrations

GPU memory
~0.3 TB/s

System memory
~0.1 TB/s

PCI-E

kernel
launch page

fault

page
fault

cudaMallocManaged

24

CUDA 8: UNIFIED MEMORY
Large datasets, simple programming, high performance

Allocate Beyond
GPU Memory Size

Unified Memory

Pascal

GPU
CPU

CUDA 8

Enable Large

Data Models

Oversubscribe GPU memory

Allocate up to system memory size

Tune

Unified Memory

Performance

Usage hints via cudaMemAdvise API

Explicit prefetching API

Simpler

Data Access

CPU/GPU Data coherence

Unified memory atomic operations

25

UNIFIED MEMORY ON PASCAL

If GPU does not have a VA translation, it issues an interrupt to CPU

Unified Memory driver could decide to map or migrate depending on heuristics

Pages populated and data migrated on first touch

Now supports GPU page faults

cudaMallocManaged(&ptr, ...);

*ptr = 1;

qsort<<<...>>>(ptr);

CPU page fault: data allocates on CPU

 Empty, no pages anywhere (similar to malloc)

GPU page fault: data migrates to GPU

26

UNIFIED MEMORY ON PASCAL
True on-demand page migrations

GPU memory
~0.7 TB/s

System memory
~0.1 TB/s

interconnect page
fault

page
fault

page
fault

page
fault

page
fault

map VA to
system memory

cudaMallocManaged

27

UNIFIED SYSTEM ALLOCATOR
Any memory will be available for GPU*

void sortfile(FILE *fp, int N) {
 char *data;
 data = (char *)malloc(N);

 fread(data, 1, N, fp);

 qsort(data, N, 1, compare);

 use_data(data);

 free(data);
}

void sortfile(FILE *fp, int N) {
 char *data;
 data = (char *)malloc(N);

 fread(data, 1, N, fp);

 qsort<<<...>>>(data,N,1,compare);
 cudaDeviceSynchronize();

 use_data(data);

 free(data);
}

CPU code GPU code with Unified Memory

*on supported operating systems

28

SUMMIT

29

SUMMIT

Vendor: IBM (Prime) / NVIDIA™ / Mellanox Technologies®

Approximately 3400 nodes, each with:

 IBM POWER9 CPUs + NVIDIA Volta GPUs

 CPUs and GPUs connected with high speed NVLink

 Large coherent memory: over 512 GB (HBM + DDR4)

 Over 40 TF peak performance

Dual-rail Mellanox® EDR-IB full, non-blocking fat-tree interconnect

2017 OLCF Leadership System

30

SUMMIT
How does Summit compare to Titan

31

SUMMIT

Fewer but much more powerful nodes

 1/6th the number of nodes, but 25x more powerful

Must exploit more node-level parallelism

 Multiple CPUs and GPU to keep busy

 Likely requires OpenMP or OpenACC programming model

Very large memory

 Summit has ~15x more memory per node than Titan

Interconnect is only ~3x the bandwidth of Titan

 Need to exploit data locality within nodes to minimize message passing traffic

Titan & Summit Application Differences

32

RESOURCES

CUDA resource center: http://docs.nvidia.com/cuda

GTC on-demand: http://on-demand-gtc.gputechconf.com

Parallel Forall blog: http://devblogs.nvidia.com/parallelforall

Self-paced labs: http://nvidia.qwiklab.com

Learn more about GPUs

http://docs.nvidia.com/cuda
http://docs.nvidia.com/cuda
http://docs.nvidia.com/cuda
http://on-demand-gtc.gputechconf.com/
http://on-demand-gtc.gputechconf.com/
http://on-demand-gtc.gputechconf.com/
http://on-demand-gtc.gputechconf.com/
http://on-demand-gtc.gputechconf.com/
http://on-demand-gtc.gputechconf.com/
http://on-demand-gtc.gputechconf.com/
http://devblogs.nvidia.com/parallelforall
http://devblogs.nvidia.com/parallelforall
http://devblogs.nvidia.com/parallelforall
http://nvidia.qwiklab.com/
http://nvidia.qwiklab.com/
http://nvidia.qwiklab.com/

34

COOPERATIVE GROUPS

35

COOPERATIVE GROUPS
A Programming Model for Coordinating Groups of Threads

Support clean composition across software boundaries (e.g. Libraries)

Optimize for hardware fast-path using safe, flexible synchronization

A programming model that can scale from Kepler to future platforms

36

COOPERATIVE GROUPS SUMMARY
Flexible, Explicit Synchronization

Thread groups are explicit objects in the program

Collectives, such as barriers, operate on thread groups

New groups are constructed by partitioning existing groups

thread_group group = this_thread_block();

sync(group);

thread_group tiled_partition(thread_group base, int size);

37

MOTIVATING EXAMPLE
Optimizing for Warp Size

__device__
int warp_reduce(int val) {
 extern __shared__ int smem[];
 const int tid = threadIdx.x;

 #pragma unroll
 for (int i = warpSize/2; i > 0; i /= 2) {
 smem[tid] = val; __syncthreads();
 val += smem[tid ^ i]; __syncthreads();
 }
 return val;
}

__syncthreads() is too expensive

when sharing is only within warps

38

MOTIVATING EXAMPLE
Implicit Warp-Synchronous Programming is Tempting…

__device__
int warp_reduce(int val) {
 extern __shared__ int smem[];
 const int tid = threadIdx.x;

 #pragma unroll
 for (int i = warpSize/2; i > 0; i /= 2) {
 smem[tid] = val;
 val += smem[tid ^ i];
 }
 return val;
}

Barriers separating steps removed.

UNSAFE!

39

MOTIVATING EXAMPLE
Safe, Explicit Programming for Performance

Approximately equal performance to unsafe warp programming

__device__
int warp_reduce(int val) {
 extern __shared__ int smem[];
 const int tid = threadIdx.x;

 #pragma unroll
 for (int i = warpSize/2; i > 0; i /= 2) {
 smem[tid] = val; sync(this_warp());
 val += smem[tid ^ i]; sync(this_warp());
 }
 return val;
}

Safe and Fast!

40

PASCAL: MULTI-BLOCK COOPERATIVE GROUPS

Provide a new launch mechanism for multi-block groups

Cooperative Groups collective operations like sync(group)
work across all threads in the group

Save bandwidth and latency compared to multi-kernel
approach required on Kepler GPUs

Normal __syncthreads()

Multi-block Sync

